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Abstract

Integral transforms have been widely used for deriving analytical solutions for solute
transport systems. Often, analytical solutions can only be written in closed form in

frequency domains and numerical inverse-transforms have to be involved to obtain
semi-analytical solutions in the time domain. For this reason, previously published
closed form solutions are restricted either to a small number of species or to the

same retardation assumption. In this paper, we applied the solution scheme
proposed by Bauer et al. [2001] in the time domain. Using available analytical

solutions of a single species transport with first-order decay without coupling with
its parent species concentration as fundamental solutions, a daughter species
concentration can be expressed as a linear function of those fundamental solutions.

The implementation of the solution scheme is straight forward and exact analytical
solutions are derived for one- and three-dimensional transport systems.

Key words: Analytical solution, retardation factor, multispecies reactive transport, first-order reaction.

1. Introduction

The analytical solution of Sun et al. [1999] to sequentially reactive transport has been used as a
screening tool for evaluating groundwater contamination and simulating natural attenuation [Aziz
et al., 1999]. However, the solution is limited to cases where retardation factors of all species are
equal. There is a need to develop analytical solutions to the system with different retardation factors
to accurately simulate natural conditions.

Derivation of analytical solutions of solute transport system usually involves complex mathemat-
ical manipulation in order to convert solutions fl’om a frequency domain to a time domain. For
this reason, previously published analytical solutions to the tra~lsport of first-order decay chains are
limited to a small number of species [van Genuchten, 1985; Lunn et al.~ 1996]. Although Sun et al.
[1999] extended analytical solutions to N-species, retardation factors were not incorporated. Eykholt
and Li [2000] developed a semi-analytical solution of a linear reaction network using a response func-
tion approach. Since numerical convolution is involved, it is difficult to implement the approach as a
screening tool. Recently, Bauer et al. [2001] developed a Laplace domain solution using a recursive
form. The concentration of a daughter species is expressed as a linear function of ancestor concen-
trations and the factor of each species concentration is calculated using the recursive form. Though
Bauer et al. [2001] has made significant progress in first-order reactive transport, the complexity of



inverse Laplace transform makes the code implementation difficult. When numerical inverse Laplace
transforms are involved, the approach becomes even more complicated. Both Eyldlolt and Li [2000]
and Bauer et al. [2001] are based oll the unimolar assumption, that is, the stoichiometry of the
reaction is such that 1 tool of product is produced by consuming 1 tool of reactant.

In order to avoid the difficulty with inverse Laplace transforms and with numerical processes, we
propose an approach to develop closed form solutions of first-order reactive chains in the time domain.
We also incorporate yield coefficient factors to the solution approach and analytical solutions. For
the sake of simplicity, we demonstrate the solution scheme for a one-dimensional solution to a four-
species reactive problem. The solution derived in this paper is compared with Lunn et al. [1996]
and Sun et al. [1999]. Further, we extended the one-dimensional solutions to a three-dimensional
system.

2. First-order reactive transport

The transport of a first-order decay chain can be written as [Bear, 1979]:

,C(c.i) = ’Oci +Rikici - Ri-tYi-lki-lci-1, Vi = 1, 2, ... , n, (1)
Ot

where £ is the advective-dispersive operator, which is linear in ci and can be simplified in a homoge-
nous one-dimensional colunm as

0e 0c = z)~-~ - v~ (2)

where v is the constant flow velocity [LT-1] and D represents a constant hydrodynamic dispersion
coefficient [LeT-Z]:

D = av + :iP (3)

where a is dispersivity ILl, 7P is the molecular diffusion coefficient [L2T-1], and Ri and ki represent
the retardation factor and the first-order decay rate of species i: respectively. Yi-~ is the stoichio-
metrical yield factor calculated as the concentration ratio of ci to ci-i in the reaction from species
i - 1 to species i. Eq. (1) differs from the basic equation of Suit et al. [1999] by the species-specific
retardation factors. The transform of Sun et al. [1999] fails to derive analytical solutions when
Ri 7~ Rj. 7? is assumed to be negligible, thus, D = av is used in the rest of this paper.

3. Solution method

Since equation (1) for species i is linear in ci, the solution of ci can be written as a linear
combination of the fundamental solutions ftj Vj = 1, 2, ¯ ¯ -, n

i

j=l

(4)

or in matrix format

c = Aft, (5)

where f~i, Vi = 1, - ¯ -, n, represents the analytical solution of ith species concentration in the time
domain without coupling with the concentration of its parent species, ci-t,

£(f~i) = Ri~ + Rikifti, Vi = 1, 2,...I (6)(] 



A is called transform matrix and Ai = 0 Vj > i. If all components of A, A}, Vj < i, i = 1, 2,-.-, n:
can be expressed as closed form functions of system parameters and fundamental solutions, 12j, j =
1, 2,.-., i, the analytical solutions of e in (5) become available.

Similarly to Bauer et al. [2001], by substituting (4) into (1),

Since the last term o51 tile left hand of equation (7) equals zero when j = 

(s)

4. Solution Implementation

The analytical solution of Bear [1979: p. 268] to a single species transport with first-order decay
in a semi-infinite colmnn is w,’itten as:

Co
f = -~-exp(ax)erfc(fl)

where

1 ( 1 ~)1/’) x_(v2+4kD)l/2t
cY= ~a- ~ +

~=
2(Dr)1/:

Let

1
f~i = ~exp(c~ix)errc(/3i) Vi = 1,2,...,n.

Correspondingly,

~al (~1._~_~lJi.lki 1/2 x_ (v~ + 4k~Di)t/2 
Cti = -- -I- .. _ fli =

(Dit)l/2

(12)

(13)

the transform format of Sun et al. [1999] can be derived. Therefore, the approach Sun et al. [1999]
proposed is a typical case of (10).

Equation (8) holds, if each term on the left equals the corresponding term oll the right,

[ ooj 1A} (Ri-Rs)-~-+(Rik.i-Rjks)f~ j =A}-lRi_lyi_lki_lf~j Vj=I,2,---,i-1. (9)

Then, the components of the transform matrix can be written in a reeursive format

A} = 4i: -1 R.i-lyi-lki-1 ~j

- 3 (R~ - Rs) on~
(lO)

-5-i- + (R~k~ - Rskj) f~S"

If Ri = Rs,

A} = Ai-l yi -lki-1-j g--~j, (11)



where vi = v/R.i is the transport velocity of species i. When x = 0,

~d~=0=l, Vi=l,2,.-.,n.

When fl >> 2, ~ function reaches stead), state

(14)

~ti = exp(cqx) V/3i >> 2, i =" 1, 2,---,n. (15)

Then, the first derivative of ~, in terms of time can be written as

- ~exp (~x - 0~) t-~ +
- Vi = 1.2,-... ~.

Ot 4~Di~ ’ ’ (16)

To implement this solution scheme, we take a transport of foul" sequentially reactive species as
an example. According to (4),

q-A44~4.

If the boundary condition is defined as

(18)

the components of the transform matrLx A can be derived successively as

(19)

Rly~k~ R2Y2k2~d~ = .4~ (R2 - R~)°o-~. + (R2k2 R~kl)~t~ A3 = A2 (Ra R ~ o_q_~
- - ~ ot + (R3k3- Rsk~)~t~

RaYak3~2 RaYak3~3A~
A~(R4 R ,o~_gz-- 2] Ot + ( R4k4 R2k2)~2 = A~(R4 D ,O~a

A~
- - *~31 ot ÷ (R4k4 - Raka)~a

Since ~j and Ol~j/Ot have closed analytical fornmlae (13) and (16), respectively, the transform
matrix A is exactly analytical and the concentration solutions are analytically described using (5)-
Though the analytical solution is not written in a single formula, the implementation of the solution
scheme can be summarized as

d~
Ft ----+ -~ ----+ A ---+ e. (20)
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5. Application and Analysis

5.1. Comparison with Lunn et al. [1996]

Lmm et al. [1996] developed analytical solution to a transport system of three species first-order
decay chain. The model is written as

¯ 0cl = r)02cl 0cl _ k~cl
(1 + Kd)--~ -- Ox2 -- V-~x

0c2 ~ 02c2 0c2
o-Y = ~x2 - v~ k2c2 + klcl

0c3 D 02 c3 0c3
O~ = -- Ox2 - v-o-xx - k3e3 + k~c2 (21)

where k~ = kl(l+Kd) mid Kd is constant adsorption coefficient. We used the same column geometry
and defined system parameters as shown in Table 1.

Table 1. System parameters used in Lunn et al.’s [1996] model

Velocity v 0.1 cm h-1

Dispersion coefficient D 0.18 cm2 h-1

Retardation factor 1 R1 = 1 + Kd 2
Retardation factor 2 R2 1
Retardation factor 3 R3 1
lst-order reaction, rate 1 kl 0.025 h-1

lst-order reaction rate 2 k2 0.03 h-1

lst-order reaction rate 3 k3 0.02 h-1

The initial and boundary conditions are assumed as

c~(O,t) = 1.0 c2(O,t) c3(0, t) = 0 (22)

Figure 1 demonstrates a good match between the solution derived by Lulm et al. [1996] and the new
solution derived in this paper after 200 h. Although the new solution can be considered identical to
Lunn et al.’s solution, the coding effort required is significantly reduced.
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Figure 1. Concentration profiles of three species transport with a constant boundary condition.

t = 200 h, R = (2, 1, 1), k = (0.025, 0.03, 0.02) -i, c o = (1 .0, 0. 0, 0. 0), a = 1. cm2h-i,

v = 0.1 cmh-1.

5.2. Comparison with Sun et al. [1999]

In order to demonstrate that the Sun et aL [1999] transform is a typical case in (10), we use
a four-species transport probleul in a one-dimensional column [Bear, 1979, p. 268] and assume
c° = [1, 0, 0, 0], Ri = R2 = R3 = R4 = 1. Using the Sun et al. [1999] transfornl, tile solution of
four species concentrations can be written

C3 = a3

c4 = a4

where

al = ~1

k3 - k4

Yl ki
a2 -- ~2

kl -- k2

YiY2Y3 ki k2 k3

C3 (k2 -- k4)(~3 - c2 - ( kl - k4 )( k2 - k4 )( k3 - k4 51 (23)

yiy2kik2

(kl -ka)(k2 -k3)~3a3

yly2y3klk2k3
a4 = (kl -- k4)(k2-k4)(k3-k4)~4" (24)

Substituting ai, Vi = 1, 2, 3, 4 and tile ancestor concentrations in the daughter species concentrations,
the species concentrations can be expressed as linear functions of tile basic solutions (4)



Yi Y2 ki k2 Yi Y2 ki k2c3 =
~(kl - k2)(]gl - ]~3)~1 I _ ]g2)(k 2 _ k3) ~2-{-

YlY2Y3kl k2k3 yly2y3kl k2 k3

(kl -k2)(kl ka)(kl -k 4)~1 ~ (k l - k2)(k2 - k3)(k2-k4)~2e4

yly2y3klk2k3

(kl - k3)(k2 - k3)(k3 -- ~3+
yty2Y3klk2k3

(kl -- k4)(k2 -- k4)(k3 -- k4)
(25)

where all components of the transform matrix are identical to those derived from (10).

A~ = 1

YiY2kik2 = A~ y2k2d~ = (kl -- k2)(kl - k3) k3=~l

YiY2Y3 kl k2 k3 3 Y3 k3A~

yly2y3klk2k3 =A3._Y3k3d~ = (kl - k3)(k2-k3)(k3-k4) 

YlY2Y3kl k2k3 YlY2Y3 kl k2 k3 YlY2Y3 kl ~2 ~3A~ = 0 + (kl - k2)(kt k3)(kl - k4) - (k~ - k2)(k2 - ku)(k2 - + (kl - k3)( k2- k3)(k 3 

= c~- A4 - A4 - A4. (26)

5.3. Central line concentrations of a BIOCHLOR example

Aziz et aL [1999] implemented the Sun et al. [1999] solution for multiple first-order decay chains
with the same retardation factor in the BIOCHLOR code. To understand what role retardation fac-
tors play in the sequentially reactive transport, we use the example of dectflorination in BIOCHLOR,

cl k~ c2 k~ c3 k3 c4 k4
(PCE) ---+ (TEE) ~ (DCE)

--~ (VC) ---+
(27)

yl y2 y3



where PCE, TCE, DCE, and VC are tetrachloroethylene, trichloroethylene, dichloroethylene, vinyl
chloride, respectively. When the system parameters are defined as in Table 2, the central line
concentrations are shown in Figure 2. The solid line represents the new solution ci, Vi = 1, 2, 3, 4 when
unique retardation factors [7.1, 2.8, 2.9, 1.4] are used while the dashed line represents the central-line
concentrations, c~, Yi = 1, 2, 3, 4, calculated from BIOCHLOR, when the average retardation factor~
/~ = 2.9 is used for every species. Figure 3 shows the steady state concentrations of four species
along the central line in the study domain of Domenico [1987]. Initially, c4 advances slower than c~
(Figure 2), but after steady state is reached, it advances farther (Figure 

Table 2. Data set for BIOCHLOR example

Velocity v 111.7 ft yr-1

Dispersivity a 40 ft
Retardation factor 1 R1 7.1
Retardation factor 2 R2 2.9
Retardation factor 3 R3 2.8
Retardation factor 4 R4 1.4
lst-order reaction rate 1 kl 2.0 yr-1

lst-order reaction rate 2 k2 1.0 yr-1

lst-order reaction rate 3 k3 0.7 yr-1

1st-order reaction rate 4 k4 0.4 yr-1

Boundary concentration 1 c~ 56.00 mg L-l

Boundary concentration 2 c~ 15.80 mg L-1

Boundary concentration 3 c~ 98.50 mg L-1

Boundary concentration 4 c~ 3.08 mg L-1

Yield coefficient 1~2 y~ 0.79
Yield coefficient 2--+3 y2 0.74
Yield coefficient 3-+4 y3 0.64
Time t 1.5 yr
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Figure 3. Steady state concentration profiles of four species transport calculated in tile study
donlain of Domenico [1987] are compared to those calculated using our new solution schenle.

5.4. Extension to Domenico’s domain

Domenico [1987] derived ml analytical solution of a single species with first-order decay in three
dimensions. Aziz et al. [1999] inlplemented this solution with the Sun et al. [1999] transform in
the BIOCHLOR code. To overcome the restriction of the same retardation factor, here we apply
the recursive transform with Domenico’s [1987] solution, which can be expressed as the product of
late~’al distribution factor and longitudinal concentration distribution [Petersen and Sun: 2000]

c(x, y, z) c°’~(x, y, z)~’(k) = c °~ (28)



where

1 ~erf y +Y/2 ~y-Y/2 ~( z+Z/2
---- - eri-- > ~ erf~~,(x,y, z) = ~ [ 2(ay.)1/2 2(aNx)1/2 ) t 2(a~x)

10

z-z~2 }
erf------ (29)

2(azx)l/"2

and 7(0, 0, 0) = 1. Y and Z are tile source dimensions [L], and a,, aN, a~ are, respectively, longitudi-
nal, transverse, and vertical dispersivities [L]. Since the lateral distribution factor 7 is a function of
spatial variables and dispersivities, it is species independent. Note that f~’ here is equivalent to ~ in
(13) in the one-dimensional system. Tile basic solution for species i in three-dimensional Domenico’s
domain is redefined as

7
f)i = ~exp(aix)erfc(/3i) 1, 2,-.- ,n. (30)

Correspondingly, the first derivative of ~ is

0a~ ~ (~,x _ ~) ~ ,,~.-- =---exp Vi = 1, 2,.-- (31)
Ot 4x/Dia-

Using the same system parameters in Table 2, the concentration profiles of four species, when
t = 15 yr and z = 0, are shown in Figure 4. Additional parameters are given as a, = 40, aN = 10,
a~ = 10. Figure 4 also shows the comparison of concentration profiles (left column) derived h’om
the new solution scheme and those (right column) calculated fl’om BIOCHLOR.
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5.5. Sensitivity Analysis

The effect of linear sorption on the mass transport of a single species has been extensively studied
[Beat’, 1979], To estimate the effect of retardation factors of parent species on the daughter species
and understa~ld the behavior of the sequentially reactive transport systems with different retardation
factors, a sensitivity analysis is conducted using Lunn et al.’s [1996] model and the new solution.
By changing Rt, R2~ R3, respectively: and fixing all other system parameters~ the concentration
profiles of the end product are shown in Figure 5. The thick solid line represents the base case when
R1 = 2, R2 ~ 1, R3 = 1 as shown in Figure 1. Higher values of R1 (grandparent), R2 (paxent), 
R3 (itself) make the transport of c3 slower, but higher values of RI and Re make the concentration
higher upstream and lower downstream while the higher value of R3 makes the concentration of c3
lower anywhere.
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6. Conclusions

A solution scheme has been developed in the time domain for deriving analytical solutions of
sequentially reactive transport systems with different retardation factors. To avoid the difficulty
inherent in using inverse Laplace transforms, previously published analytical solutions for a single
transporting species in the tiule domain aze used as fundanlental solutions. Since the partial differen-
tim equations are linear in species concentrations, a daughter species concentration can be expressed
as a lineal function of those fundamental solutions. The solution scheme accounts for stoichiometric
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yield coefficients. One unit of parent species unnecessarily produces one unit of daughter species. It
has been demonstrated that Sun et al. [1999] transform with the same retardation assumption is a
typical scenario in the recursive transform presented in this paper. The new solution derived using
the solution scheme matches Lunn et al. [1996] for three species transport in a one-dimensional
column.
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